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ABSTRACT
We present a theoretical analysis of Watson’s Hierarchical-
if-and-only-if (HIFF) problem using a variety of tools. These
include schema theory and course graining, the concept of
effective fitness, and statistical analysis. We first review
the use of Stephen’s exact schema equations and schema
basis to compute the changes in population distributions
over time. We then use the tools described above to solve
for the limit distributions of the 2 and 4-bit HIFF problems,
and show that these limit distributions are essentially one-
dimensional. We also show that a combination of fitness and
the number of break points (a rough measure of distance in
crossover space) in a string can be used to almost completely
explain the limit distribution in the 4-bit HIFF problem.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization; G.3 [Probability and Statistics]: Distribution
functions, probabilistic algorithms, stochastic processes

General Terms
Theory

Keywords
Evolutionary Computation, Schema Theory, Hierarchical-if-
and-only-if (HIFF) Problem, Limit Distributions, Distance
Metrics

1. INTRODUCTION
One of the primary goals of evolutionary computation

(EC) theory is to better understand the dynamics of evo-
lutionary systems, in the hopes that such an understanding
will be of both scientific and practical value. Even in simple
problems, however, these dynamics can be complex. This of-
ten makes a detailed understanding of interesting problems
quite difficult.
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In this study we apply schema theory and other tools to
better understand the dynamics of the Hierarchical-if-and-
only-if (HIFF) problem [17]. The HIFF problem is simple to
define, yet has interesting and complex dynamics that have
been valuable in previous studies of important concepts such
as the Building Block Hypothesis [3, 2, 16] and modularity
[15].
One of the earliest and best known analytical tools in

genetic algorithms (GAs) is Holland’s Schema Theorem [3].
This was, however, an inexact theorem, providing only a
lower bound on the propagation of schemata over time. This
was later extended by Stephens and Waelbroeck to an exact
schema equation for GAs [12, 13]. Exact schema theory,
which has been successfully applied in a number of settings
[4, 13, 14, 8, 9], will serve as the primary analytical tool in
the work presented here.
After providing necessary background information in Sec-

tion 2 we present a theoretical analysis of the HIFF problem
in Section 3. We begin by using schema theory and coarse
graining to calculate population distributions and solve for
limit distributions of the 2 and 4-bit HIFF problem (Sec-
tions 3.1, 3.2, and 3.3). We also show that these limit dis-
tributions are essentially one-dimensional, since we can use
the proportion of a single schema in the limit distribution
to compute all the other proportions in the distribution.
In Sections 3.4 and 3.5, we analyze these results using sta-

tistical methods and the concept of effective fitness. With
these tools, we verify the existence of the limit distributions,
and show that a combination of fitness and break points (a
rough measure of distance in crossover space) almost com-
pletely explain the limit distribution in the 4-bit HIFF prob-
lem.
After discussing our ideas for future avenues of research

in Section 4, we present our conclusions in Section 5.

2. BACKGROUND
In this section we review a variety of concepts and defini-

tions used in this study. We also present the details of the
problem setup used throughout the paper.

2.1 The HIFF problem
The HIFF problem is defined using a recursive fitness

function, as follows: If the bit string being considered con-
sists of all zeros or all ones, the fitness of the string is equal
to the length of the string, otherwise it has a fitness of 0.
This same criteria is then applied recursively on each half
of the string, until it can be subdivided no further. Adding
the fitnesses of all substrings together yields the fitness of
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the whole. Two examples of this process are presented in
Figure 1.
More formally, the HIFF fitness function [17] can be de-

fined as:

Definition 1 (The HIFF Function).

f(B) =

8>>>><
>>>>:

1, if |B| = 1,
|B| + f(BL) + f(BR), if (|B| > 1) and

(∀i{bi = 0} or

∀i{bi = 1}),
f(BL) + f(BR), otherwise.

Here B is a block of bits, {b1,b2, ...bn}, |B| is the size of
the block (and therefore equal to n), bi is the ith element of
B, and BL and BR are the left and right halves of B (i.e.
BL = {b1, ...bn/2}, BR = {bn/2+1, ...bn}). n must be an
integer power of 2.

From Definition 1, it follows that for any value of n, there
will be two global optima: the string consisting of all zeros,
and the string consisting of all ones. In the 4-bit case for
example, the global optima are the strings 0000 and 1111,
each of which has a fitness of 12. Similarly, the lowest fitness
a string can have is equal to the length of the string, and
occurs when there are no matching pairs.

2.2 Problem setup
In this paper we will be dealing solely with a “standard”

fixed length, binary bit string GA using crossover and no
mutation. We will use one-point crossover, where all crossover
points (including the point before and after the entire string)
are equally likely. A generational model and fitness propor-
tionate selection will be used throughout.
In our studies of both the 2 and 4-bit HIFF problems,

we will always start with an initial distribution containing
equal proportions of the least fit strings. In the 2-bit HIFF
problem this means that we start with half the strings being
01 and half the strings being 10. In the 4-bit case there are
four strings having minimal fitness (0101, 0110, 1001, and
1010), so our initial distribution will be 25% of each of these
string and 0% of the other 12 strings.

2.3 Schema theory
In this section we will present key concepts from the exact

schema theory of Stephens and Waelbroeck [12, 13]. This
theory allows us to calculate the exact proportions of differ-
ent strings in the population over time, but with the impor-
tant assumption that we have an infinite population.
In this paper a schema (typically represented with H) is

sequence of symbols from the set {0, 1, ∗}, where ∗ is the

0|{z}
1

0|{z}
1| {z }

2

0|{z}
1

0|{z}
1| {z }

2| {z }
4

0|{z}
1

0|{z}
1| {z }

2

1|{z}
1

0|{z}
1| {z }

0| {z }
0

4+2 + 2 + 1 + 1

+1 + 1 = 12

0+2 + 0 + 1 + 1

+1 + 1 = 6

Figure 1: Examples of HIFF fitness calculation on
the strings 0000 and 0010

“don’t care” or wild card symbol. A schema, then, repre-
sents the set of individuals who match the schema at all the
defined positions, i.e., those positions having either a 0 or
a 1. Schemata of this form allow for coarse graining [13],
where we can treat whole sets of strings as a single entity.
Next we present a series of definitions that allow us to

count instances of schemata:

Definition 2 (Proportion in population). φ(H, t) is
the proportion of strings in the population at time t match-
ing schema H. For finite populations of size M , φ(H, t) =
m(H, t)/M , where m(H, t) is the number of instances of H
at time t.

Definition 3 (Selection probability). p(H, t) is the
probability of selecting an instance of schema H from the
population at time t. This is typically a function of φ(H, t),
the fitness distribution in the population, and the details of
the selection operators. With fitness proportionate selection,
for example, p(H, t) = φ(H, t)× f(H, t)/f(t), where f(H, t)
is the average fitness of all the instances of H in the popula-
tion at time t and f(t) is the average fitness in the population
at time t.

Definition 4 (Transmission probability). α(H, t) is
the probability that an instance of the schema H will be con-
structed in the process of creating a new individual for the
population at time t + 1 out of the population at time t.
This will typically be a function of p(K, t) for the various
schemata K that could play a role in constructing H, and
the details of the various recombination and mutation oper-
ators being used.

We can now model the standard evolutionary algorithm
as the transformation

φ(H, t)
select−→ p(H, t)

XO−→ α(H, t)
sample−→ φ(H, t+ 1).

Here the arrows indicate that some new distribution (on
the right hand side of the arrow) is generated by applying
the specified operation to the previous distribution (on the
left hand side). The process of selection can be seen as a
transformation from the proportions of schemata φ(H, t) to
the selection probabilities p(H, t). A crucial observation is
that for an infinite population the sampling process is exact,
so α(H, t) = φ(H, t+1) for t ≥ 0. This means we can iterate
these transformations to exactly model the behavior of an
infinite population over time.
We have shown how to compute p(H, t) from φ(h, t) using

fitness proportionate selection, and how to compute φ(H, t+
1) from α(H, t) (because we are using an infinite popula-
tion). To complete our formalization of the transformation
process, all that remains is to compute the transmission
probabilities α(H, t) from p(H, t) via modelling crossover.
To formalize this process, we consider a schema H = c0c1 . . . cN−1,
where each ci ∈ {0, 1, ∗}, and define1

l(H, i) = c0c1 . . . ci−1(∗)N−i

r(H, i) = (∗)icici+1 . . . cN−1

Here l(H, i) is the schema matching the leftmost i symbols of
H , and r(H, i) is the schema matching the rightmost N − i
symbols of H . The important property of l and r is that

1The notation (∗)k here represents a string of k wildcard
symbols.
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if one uses one-point crossover to crossover any instance of
l(H, i) at position i with any instance of r(H, i) at position
i, the result will be an instance of H , provided 0 ≤ i ≤ N .
Further, these are the only ways to use crossover to construct
instances of H , so these definitions fully characterize the
mechanism for constructing instances of H .
Given these definitions, we can present the schema theo-

rem (based on [13]):

Theorem 1 (Schema theorem). For fixed length bit
strings using one-point crossover and no mutation we have

α(H, t) =
1

N

X
0≤i≤N

h
p(l(H, i), t)× p(r(H, i), t)

i
(1)

2.4 Schema and string bases
The schema calculations above can be performed in any

of a number of bases [1]. A basis in this context is a set of
2N schemata (where N is the length of the bit strings) such
that knowing the proportions of those schemata allows one
to reconstruct the proportions of all of the 3N schemata. As
is discussed in [1], the choice of basis can greatly simplify
(or complicate) calculations in a system. In this work we
used two bases, the string basis and the schema basis (both
described below), each of which has advantages at different
points in the schema calculations. In this section we will
describe the two bases, discuss their uses in this work, and
briefly discuss how to convert between these bases.

2.4.1 String basis
In the string basis we use all the strings without wildcards

as the basis. It is then quite straightforward to compute the
proportions of schemata with wildcards by simply adding up
the proportions of the appropriate strings, e.g., p(∗1, t) =
p(01, t) + p(11, t).
It is often necessary to work in the string basis when com-

puting the selection probabilities p(H, t) with non-trivial fit-
ness functions. In particular, one can only compute the se-
lection probabilities for schemata with uniform fitness, i.e.,
where every string matching the schema has the same fit-
ness. In the HIFF problem, the only schemata that have
this property are strings without wildcards, so we have to
use the string basis to compute the selection probabilities.

2.4.2 Schema basis
In the schema basis [1] we track the proportion of all the

schemata formed using the symbols {1, ∗}. This is a com-
plete basis in the sense that if you know the proportions of
all the schemata in this basis, you can calculate the propor-
tions of any other string or schema using the 0 symbol as
well. So, for example, p(01, t) = p(∗1, t)− p(11, t).
In this work we have performed the transmission prob-

ability calculations from Equation (1) in the schema basis
as it greatly simplifies those computations. If we performed
these calculations in the string basis, for example, terms
like l(H, i) would expand to potentially large sets, creat-
ing a large implicit double summation inside the explicit
summation in (1). As an example, consider the case where
H = 0110 and i = 2. Then

p(l(0110, 2), t)

= p(01 ∗ ∗, t)
= p(0100, t) + p(0101, t) + p(0110, t) + p(0111, t)

and p(r(H, i)) would expand to a similar summation. Work-
ing in the schema basis, however, avoids these implicit sum-
mations. If H is in the schema basis, both l(H, i) and r(H, i)
are also members of the schema basis, so their proportions
are known immediately and don’t have to be computed us-
ing summations.
Note that it’s not necessary to use the schema basis for

these calculations as we can certainly manage the nested
summations implied by the string basis. They do, however,
greatly simplify those calculations, and we found it much
easier to evaluate the schema theorem equations using that
basis.

2.4.3 Converting between bases
Since we’re using two bases in this work, we obviously

need to convert probability distributions represented in one
basis to the equivalent distribution in the other basis, and
back again. Happily this basis conversion is accomplished
through straightforward matrix multiplication. The con-
struction of this transformation matrix is outside the scope
of this paper; see [1] for more information, and Section 3.1
below for some examples.

2.5 Effective Fitness
When using fitness based selection, it is often assumed

that fitness is the largest determinant of which individuals
increase in number within the population over time. Studies
have shown that this is not always the case, however, due
to biases in the genetic operators [4]. Crossover, for exam-
ple, can result in certain building blocks being constructed
more frequently than others. This, correspondingly, makes
the construction of certain individuals more likely than oth-
ers, independent of fitness. This behavior, therefore, results
in higher proportions of some individuals in the population
than fitness alone can explain. The concept of effective
fitness was invented to account for this phenomenon. A
schema’s effective fitness is the value its fitness would have
to be, using selection alone, to cause the same change in
proportion it experiences with its unmodified fitness in the
presence of genetic operator bias.
Various concepts of effective fitness have been discussed

in the literature; see [4], e.g., for a survey. For this study,
we use Stephens and Waelbroeck’s exact effective fitness for
GAs [12, 13], but base our notation on [7]. This definition
grows naturally out of the concepts presented in Section 2.3:

Definition 5 (Effective fitness). The effective fit-
ness of a schema H at time t is given by

feff(H, t) =
α(H, t)

p(H, t)
f(H, t) (2)

The key idea in this definition is that of scaling the ac-
tual fitness f(H, t) of the schema by α(H, t)/p(H, t). This
would, for example, have the effect of raising the effective
fitnesses of schemata that have a higher transmission proba-
bility (are constructed more often) than their selection prob-
ability alone would suggest. Thus schemata which are likely
to be constructed (via crossover in our case) can have an
effective fitness that is significantly higher than their actual
fitness. Similarly, schemata for which crossover is a more de-
structive operator will have an effective fitness that is lower
than their fitness because their transmission probability α
will be less than their selection probability p. It is impor-
tant to note that the effective fitness of a string or schemata
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changes over time, unlike normal fitness which is static. This
is due to the fact that effective fitness is directly tied to selec-
tion probability and transmission probability, both of which
vary from generation to generation.
In Section 3.4, we will use the idea of effective fitness to

help understand the limit distributions of both the 2-bit and
4-bit HIFF problems.

3. THEORETICAL ANALYSIS
In this section we apply schema theory, effective fitness,

and statistical tools to the 2 and 4-bit versions of the HIFF
problem. For the 2-bit case we are able to completely char-
acterize the problem, including solving for all the possible
limit distributions. For the 4-bit case we are able to find the
limit distribution for a particular class of symmetric initial
distributions, and statistically analyze the different forces
acting on the limit distribution.

3.1 Computing proportions for 2-bit HIFF
We’ll start by analyzing the 2-bit HIFF problem using

schema theory. While this is a very simple problem, with
only four possible strings (00, 01, 10, and 11), its simplicity
makes it easier to present the schema equations and illus-
trates several features that will be important in subsequent
discussion of a more complex instance of the HIFF problem.
In this presentation we will use vectors of the form [a, b, c, d]

to indicate a set of proportions or selection probabilities (de-
pending on the context). The values in this vector will be
associated with either the string basis [00, 01, 10, 11] or the
schema basis [∗∗, ∗1, 1∗, 11], again depending on the context.
Let us assume, then, that we start with the initial dis-

tribution (in the string basis) of [0, 1/2, 1/2, 0]. We convert
this to proportions in the schema basis by multiplying by
the appropriate transformation matrix:2

664
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

3
775

2
664

0
1/2
1/2
0

3
775 =

2
664

1
1/2
1/2
0

3
775

This means that 100% of the initial population matches the
schema ∗∗ (which will of course always be true), half the
population matches ∗1 and half matches 1∗ (because half
the initial strings have a 1 in the first position and half have
a 1 in second position), and no individuals match 11 (since
there are no instances of that string).
We then use Equation (1) from the Schema Theorem to

compute the transmission probabilities. The transmission
probability for ∗1, for example, is

α(∗1) = (p(∗∗)p(∗1) + p(∗∗)p(∗1) + p(∗1)p(∗∗))/3
= (1× 1/2 + 1× 1/2 + 1/2× 1)/3

= 1/2

Doing this for all four schemata in the schema basis yields
[1, 1/2, 1/2, 1/12] as the distribution (in the schema basis)
after crossover.
Given this distribution in the schema basis, we can then

convert back to the string basis by multiplying by the inverse
of the transformation matrix above:2

664
1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

3
775

2
664

1
1/2
1/2
1/12

3
775 =

2
664
1/12
5/12
5/12
1/12

3
775

Gen φ(00) φ(01) φ(10) φ(11)

0 0 1/2 1/2 0
1 1/12 5/12 5/12 1/12
2 5/28 9/28 9/28 5/28
3 59/228 55/228 55/228 59/228

∞ 1+
√

33
16

7−√
33

16
7−√

33
16

1+
√

33
16

Table 1: The exact proportions in the string basis
for the first few generations of the 2-bit HIFF prob-
lem. The limit distribution is given in the last row
(labelled ∞).

Gen φ(∗∗) φ(∗1) φ(1∗) φ(11)

0 1 1/2 1/2 0
1 1 1/2 1/2 1/12
2 1 1/2 1/2 5/28
3 1 1/2 1/2 59/228

∞ 1 1/2 1/2 (1 +
√
33)/16

Table 2: The exact proportions in the schema basis
for the first few generations of the 2-bit HIFF prob-
lem. The limit distribution is given in the last row
(labelled ∞).

This says that after one generation, the strings 00 and 11
are each represented by 1/12 of the individuals in the pop-
ulation, and 01 and 10 are each represented by 5/12 of the
individuals.
We can then use the formula from Definition 3 to compute

the selection probabilities (in the string basis). The selection
probability of 01, for example, is

p(01) =
5

12
× f(10)

f̄
=

5

12
× 2

(7/3)
=

5

14

Doing this for all the strings yields [1/7, 5/14, 5/14, 1/7] as
the selection probabilities after the first generation.
At this point we’ve completed one full generation. We

can now convert back to the schema basis and compute the
transmission probabilities using the Schema Theorem, then
convert back to the string basis and compute the selection
probabilities, etc., for as many generations as we wish. In
Tables 1 and 2 we have tabulated the proportions for several
generations in both the string basis and the schema basis.
Figure 2 also shows the changes in the proportions over time;
note the speed with which the proportions converge to their
limit distributions.
There are several things to note about the string basis

proportions in Table 1. First, the proportions of 00 and
11 are increasing and will come to dominate the population
as we would expect. Second, the exact proportions become
increasingly complex. In fact, since the proportions in the
limit distribution are irrational numbers (see below), each
column of this table is the beginning of a rational sequence
whose limit is the irrational limit value in the final row. As
a result, these rational proportions grow more complex as
they approach their irrational limit. Lastly, and not surpris-
ingly, the symmetry in the initial distribution is maintained
across time, with φ(00) = φ(11) and φ(01) = φ(10) in all
generations.
An important question is what sort of dependencies exist
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Figure 2: Proportions in the string basis over time
for the 2-bit HIFF problem

in this distribution data. There are four proportions, but
it’s clear that they are not all independent. Since the pro-
portions in the string basis must add up to 1, knowing any
three is sufficient to compute the fourth. Further, because
of the symmetry in this case, knowing any one proportion is
enough to determine all four. Thus the proportions at each
generation can be seen as a function of a single value that
is changing over time.
While it is not difficult to use the string basis proportions

to verify that there is only one independent variable, it’s
immediately obvious when looking at the schema basis pro-
portions in Table 2. Here, the proportions of three of the
schemata remain constant over time, and only the fourth
one changes, making it quite clear that the process is driven
by a single independent variable. This provides an excellent
example of how a change of basis can make the underlying
structure of the process much clearer [1].

3.2 2-bit limit distribution
Repeatedly iterating the schema equations as we did in

the previous section can help us understand problem dy-
namics over time. It can also suggest important properties
such as the stable symmetry and the existence of a single
independent variable as discussed above. In some cases we
can further use these equations to exactly solve for impor-
tant structures such as limit distributions.
In the 2-bit HIFF problem, for example, we can start

with a distribution of [1, x, y, z] in the schema basis and run
through one round of crossover and selection, yielding a new
distribution:»

1,
3x + xy + 2z

d
,
3y + xy + 2z

d
,
2(xy + 2z)

d

–
(3)

where d = 6 − 3x + 2xy − 3y + 4z. If [1, x, y, z] is a limit
distribution, then it must be unchanged by an iteration of
the schema equations. Thus, by setting this new distribution
equal to the initial distribution [1, x, y, z] we can solve for all
the possible limit distributions. In this case there are five
different solutions to the resulting set of equations:

x = y = z = 0 x = y = z = 1
x = 1, y = z = 0 y = 1, x = z = 0

x = y = 1/2, z = 1+
√

33
16

The first four solutions correspond to cases where the en-
tire population consists of copies of a single string (00, 11, 01,

String Proportion Fitness

0000, 1111 0.303947 12
0011, 1100 0.0779981 8
0001, 0111, 1000, 1110 0.0402681 6
0010, 0100, 1011, 1101 0.0149496 6
0110, 1001 0.00533775 4
0101, 1010 0.00228135 4

Table 3: The string basis proportions in the limit
distribution for the 4-bit HIFF problem. Note that
strings with the same proportion are grouped to-
gether.

and 10 respectively). The last solution (which is included as
the last line in Tables 1 and 2 and indicated in Figure 2) can
be shown to be the limit distribution for the symmetric case
discussed above. In particular, one can use Equation (3) to
show that any distribution of the form [1, 1/2, 1/2, z], where
0 ≤ z < (1 +

√
33)/16, will transform after one round of

crossover and selection to some distribution [1, 1/2, 1/2, z′]
where z < z′ < (1 +

√
33)/16. Therefore the limit of the

sequence of z values must be (1 +
√
33)/16.

Thus the limit distribution for the symmetric case consists
of roughly 42% all zeros and 42% all ones, and then roughly
8% each of the sub-optimal strings 01 and 10. This means
that in the limit of the 2-bit HIFF problem starting with
symmetric distribution above, the GA is focussing the sub-
stantial majority of it’s “attention” on the global optima.
As we shall see in the next section, however, this is less true
as we increase the number of bits in the problem.

3.3 4-bit HIFF problem
Using techniques presented above, we were also able to

iterate the schema equations for the 4-bit HIFF problem
as well as solve for the limit distribution when using the
balanced initial distribution described in Section 2.2. The
formulas for the limit distribution consist of a large number
of complicated rational functions, and we have not included
them here because of space restrictions.
Solving for the limit distribution yields the proportions

shown in Table 3 and in Figure 3. Note that the bulk of
the system’s “attention” is again focused on the two global
optimum, with just over 60% of the population being in-
stances of those two strings. This is, however, quite a bit
less than the over 80% allocated to the global optima in
the 2-bit case; the two second most fit strings, for example,
collectively represent over 15% of the population.
Interestingly, not all strings with the same fitness have

the same proportions, presumably due to differences in their
likelihood of being constructed via crossover. For example,
two of the four least fit strings (0110 and 1001) have propor-
tions that are more than twice those of the other two least
fit strings (0101 and 1010). The strings with the higher pro-
portions, however, can be constructed in two crossover steps
from instances of the most fit strings, while the two with
the lower proportions require three crossover steps starting
with optimal strings. Thus the difference in proportions is
not surprising, as those with lower proportions require the
construction and subsequent selection of two intermediate
sub-optimal strings in order to be constructed. We discuss
this phenomenon further in Section 3.4, where we use the
concept of effective fitness to analyze our results, and in Sec-
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tion 3.5, where we use statistical methods to explain nearly
all of the limit distribution data.
Given that the limit distribution for the 2-bit HIFF prob-

lem turned out to be the function of a single independent
variable, it seemed reasonable to look for that possibility in
the 4-bit case as well. Unfortunately neither the string or
the schema basis made the dimensionality of the problem
clear. Calculations with MathematicaTM , however, revealed
that the proportions in the 4-bit case were again based on
a single independent variable. Thus, if the proportion of
the single independent schema in the limit distribution is
known, one can compute the proportions of all the other
strings and schemata. The formulas for doing this are quite
complex, however, and are therefore not included.

3.4 Effective fitness analysis
In Sections 3.2 and 3.3 we mathematically solved for the

limit distributions for the 2 and 4-bit HIFF problems, re-
spectively. In this section, we will further examine these
limit distributions using the concept of effective fitness, which
was defined in Section 2.5.
In schema theory, a schema’s transmission probability at

time t (α(H, t), using the notation presented in Section 2.3)
can be expressed as a function of effective fitness. From [7]
we have:

α(H, t) = φ(H, t)
feff(H, t)

f(t)
(4)

As observed in Section 2.3, in an infinite population a
schema’s transmission probability at time t is equal to its
proportion within the population at time t + 1 (or, in our
notation, α(H, t) = φ(H, t + 1)). Based on Equation (4),
we see that a schema’s proportion within the population at
time t will always be different at time t+1 unless α(H, t) =
φ(H, t). The only way for that condition to be met is to have
feff(H, t)/f(t) = 1. Put more simply, for the proportion of
a schema to remain constant over time, the effective fitness
of that schema must be equal to the average fitness of the
population at time t.
In a limit distribution, by definition, none of the schema

proportions change over time. The only way for this to
be true is if every schema possesses the same effective fit-
ness, and that effective fitness is equal to the average fitness
within the population [10, 11].
We would then expect the effective fitness of each string

to equal the average fitness in the population in the limit
distributions found in earlier sections. This is in fact the
case, confirming that we have successfully found limit dis-
tributions for both the 2 and 4-bit HIFF problems. In the
2-bit case each string’s effective fitness is about 3.69, and
in the 4-bit case each string’s effective fitness is about 9.93.
In both these cases these effective fitnesses were the average
fitness of the population in the limit distribution.
We also see that, in the 2 and 4-bit cases, the effective

fitness of the optimal strings is scaled down from their un-
modified fitness because crossover is sufficiently destructive
for these strings (and at these proportions) that there are
fewer instances of those strings than one would expect with
selection and no crossover. On the other hand, the fitness of
all the other strings is scaled up in their effective fitnesses,
as crossover constructs more instances of those strings than
would be expected using selection alone. In the 4-bit case,
for example, the strings 0011 and 1100 have the second high-
est fitness (8) and are easily constructed in a single crossover
step from the optimal strings 0000 and 1111. This accounts
for their reasonably high proportions, which are shown in
Table 3 and Figure 3.

3.5 Statistical Analysis
There is clearly interesting structure in the limit distribu-

tion for the 4-bit HIFF problem, as discussed in Section 3.3.
To gain further insight into this structure, we performed a
variety of statistical analyses. Simple linear regression, us-
ing the proportion of each schema within the population as
the response variable and their fitness as the predictor, pro-
duced an R2 value2 of about 0.9. We had expected fitness to
play a large role in determining schema proportions in the
limit distribution, and it did. On the other hand, it clearly
didn’t explain all the distribution data. Thus we chose to
perform a more detailed statistical analysis in the hopes of
explaining much of the remaining 10% of the data.
Figure 4 plots the fitness of each schema versus its pro-

portion in the limit distribution, and it is clear that there is
not a linear relationship between these values. This suggests
that a simple linear model is insufficient for explaining this
relationship, although correcting for this does not, in any of
the cases examined in this study, change the results signifi-
cantly.3 This figure also indicates that there are strings that
share the same fitness, but have different proportions in the
limit distribution.
This then led us to an examination of other factors that

might influence schema formation. Clearly, effective fitness
is not useful as a predictor here, because all effective fitnesses

2An R2 value is a statistical measure of how much of the
response can be explained by the predictors. An R2 of 1,
for example, indicates that all the data is explained by the
predictors.
3Correcting the model involved a number of linearizing
transforms to both the response and the predictor. Fur-
ther transforms were necessary to correct the multiple lin-
ear regression model used later, but once again they did
not change the results significantly. The R2 values between
the corrected and uncorrected models differed by less than
0.0004.
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Figure 4: Fitness vs. Proportion for each string in
the limit distribution of the 4-bit HIFF problem.
The curve is a quadratic fit to the data points.

are equal in the limit distribution (see Section 3.4). The
earlier results from Section 3.3 suggested we look at the
“distance” of a string from the global optima in crossover
space, i.e., the number of crossovers necessary to reach a
global optimum.
In general this notion of distance is a complex concept

which depends on a number of dynamic features such as the
structure of the current population. We chose to approx-
imate this distance with the number of break points each
schema possessed. We define a break point to be a crossover
point in a schema that separates a 1 and 0, or a 0 and 1.
For example, the schema 1001 has two break points, while
the schema 1010 has 3. Since both global optima have zero
break points, and every (one point) crossover can eliminate
at most one break point, the number of break points provides
a simple lower bound on the number of crossovers necessary
to construct a global optimum from a given string.
It seems likely, therefore, that schemata possessing equal

fitnesses but different numbers of break points would have
different proportions in the limit distribution. In particular,
in a population dominated by the global optima, schemata
with fewer break points should be easier to obtain than those
with more break points. This conjecture is supported by the
data in Table 3.
Adding the number of break points as a predictor did not

significantly improve our model. However, when the interac-
tion of fitness and break points were added as well, there was
a tremendous improvement. The R2 for the model including
the interaction between fitness and break points was above
0.9986, indicating that it explains nearly one hundred per-
cent of the proportions in the limit distribution. With the
inclusion of break points, therefore, we are able to statisti-
cally explain nearly all of the limit distribution proportions
obtained in Section 3.5.

4. FUTURE WORK
While this research generated a host of useful results, it

also raises many questions and opens other doors. Possible
extensions of this work include exploring cases of the HIFF
problem with longer bit strings, further study of the role of
dimensionality in the HIFF and other problems, comparing
these theoretical results to empirical runs with finite pop-

ulations, and applying these techniques to the randomized
HIFF problem.
One obvious extension of this work is to explore larger

instances of the problem. Our analysis of the 2 and 4-bit
HIFF problems revealed a number of interesting features,
and it would be valuable to see how these features do or do
not extend to other instances.
In Sections 3.1 and 3.3 we found that both the distribu-

tions for both the 2 and 4-bit HIFF problem were essentially
one-dimensional in that they were determined by a single
value. This was easy to read from the schema proportions
in the 2-bit case, but considerably more difficult to verify
in the 4-bit case. An important question is whether more
complex cases of the HIFF problem continue to have this
property, since this might suggest that under an appropriate
transformation HIFF problems are in fact reasonably sim-
ple. To help us better understand the structure of the HIFF
problem, though, it would also be useful to better under-
stand the why of this dimensionality. Is the HIFF problem
part of a general class of “one-dimensional” problems, for
example? Is there some shared structure in this class that
can be used to help solve those problems?
Another important area of exploration is the relation-

ship between the theoretical distributions generated with
the schema equations under the assumption of an infinite
population and the empirical results generated with finite
populations. While we would obviously expect a finite pop-
ulation to behave differently from an infinite population,
several studies have shown a strong relationship between
theoretical predictions from the schema equations and em-
pirical results for certain problem domains [8, 9, 6, 5]. Pre-
liminary results with the HIFF problem, however, suggest
(not surprisingly) that empirical runs converge quickly to
a limit distribution where the entire population consists of
copies of the same string. This suggests that the symmetric
limit distributions found here are not stable, and that even
if empirical runs are started with symmetric initial distribu-
tions, sampling error soon breaks the symmetry and the runs
converge to a single string. Further study of this phenom-
ena would help us better understand the role of sampling
in finite populations, as well as shedding more light on the
HIFF problem itself.
Finally, in [16] Watson suggests that the HIFF problem is

easily solved by a GA provided that it has sufficient diver-
sity (so that the necessary building blocks are present) and
strong linkage (so the building blocks are transmitted effec-
tively). He supports this in part through exploration of the
randomized HIFF problem, where the the bits are shuffled to
break up the linkage of the building blocks. An interesting
extension of the work in this paper would be to apply these
techniques to the randomized HIFF problem and other vari-
ants with weaker linkage. We should be able to shed light on
the relationship between the linkage of a building block, its
effective fitness, and its proportions in limit distributions.

5. CONCLUSIONS
One of the primary accomplishments of this paper is a

deeper understanding of the HIFF problem. In Sections 3.2
and 3.3 we were able to find limit distributions for both the
2 and 4-bit HIFF problems, and analysis of those distribu-
tions showed that they were functions of a single indepen-
dent variable. In the 2-bit case, we showed that the popu-
lation reached the limit distribution very rapidly (in under
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ten generations). The results presented here and work in
progress suggest that as the number of bits in the problem
are increased, the total proportion of individuals sampling
the global optima in the limit distribution seems to decrease
significantly. This finding helps to explain why the HIFF
problem becomes dramatically more difficult as the size of
the bit strings grow.
Examination of string proportions in the limit distribu-

tions revealed that strings with the same fitness did not al-
ways have the same proportions. To explain this behavior,
we used statistical methods (in Section 3.5) to examine the
limit distributions. Statistical analysis revealed that about
ninety percent of the proportions can be explained by fitness
alone. To explain the remaining ten percent, we introduced
the concept of break points, which are a measure of the num-
ber of crossover steps needed to form a string from the global
optima. With the inclusion of the interaction between fitness
and break points, we statistically explain the limit distribu-
tion proportions nearly completely, showing that they are
almost entirely dependent on these two predictors.
In addition to the numerous discoveries we made about

the HIFF problem, in Section 3.1 we provide a detailed
demonstration of how to apply schema theory to analyze
a problem. We also illustrate how the choice of basis can
simplify schema calculations, as suggested in [1]. While we
were able to solve for exact limit distributions in the 2 and
4-bit cases using these techniques, it seems likely that the
increasing complexity of higher bit cases will present signif-
icant scaling problems for this approach. Given that the
number of schemata (independent of the basis chosen) is 2n,
where n is the number of bits, additional coarse graining is
going to be necessary if we are to apply this kind of analysis
to more complex problems.
We also saw in Section 2.3 that the exact proportions gen-

erated by the schema equations are rational functions that
grow increasingly complex as the generations proceed. This
puts bounds on our ability to compute exact proportions
over large numbers of generations. If we’re comfortable with
floating point approximations this restriction goes away, but
we need to be aware of the possibility of these approxima-
tions drifting away from the true values.
Despite these concerns about scaling, it’s clear that we

were able to generate useful results on these smaller prob-
lems, and that those results have value beyond the particu-
lar problem. Our analysis shows that we can solve for limit
distributions in simplified cases, and that the populations
(under the infinite population assumption required by our
analysis) approach these limits very quickly. Further, while
the proportions of strings in the limit distribution are driven
in significant part by their fitness, it’s clear that other dy-
namics play a significant role, and a role that appears to
grow as the problems become more complex.
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